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The main driving force to write a third edition was the inadequate description of several 
basic NMR phenomena in the earlier editions, as well as in the majority of NMR textbooks. 
The quantum picture of NMR provides the most general description that is applicable to all 
NMR experiments. As a result, the quantum description of NMR often takes center stage, but 
comes at the expense of forfeiting a physically intuitive picture. Inappropriate descriptions of 
NMR result when the quantum mechanics are incorrectly simplified to a classical picture. 
However, ever since the very first report on NMR in bulk matter by Felix Bloch, it is known 
that the NMR phenomenon for many compounds, like water, can be quantitatively described 
based on classical arguments without the need to invoke quantum mechanics. The current 
edition adopts this classical description for a very intuitive and straightforward description of 
NMR. While many aspects of in vivo NMR, including MR imaging, magnetization transfer, 
and diffusion can be successfully described, the classical description does prove inadequate 
in the presence of scalar coupling. At this point the classical description is replaced with 
a  semiclassical correlated vector model that naturally leads to the quantum‐mechanical 
product operator formalism.

The third edition also takes the opportunity to correct misconceptions about the nature of 
radiofrequency (RF) pulses and coils, and provides an updated review of novel methods, 
including hyperpolarized MR, deuterium metabolic imaging (DMI), MR fingerprinting, 
advanced magnetic field shimming, and chemical exchange saturation transfer (CEST) 
methods. However, it should be stressed that this book does not set out to present complete, 
detailed, and in‐depth reviews of in vivo MRS methods.

The main objective of the book has always been to provide an educational explanation and 
overview of in vivo NMR, without losing the practical aspects appreciated by experimental 
NMR spectroscopists. This objective has been enhanced in this edition by relegating a signifi-
cant number of mathematical equations to the exercises in favor of more intuitive, descriptive 
explanations and graphical depictions of NMR phenomena. The exercises are designed to 
review, but often also to extend the presented NMR principles and techniques, including a 
more in‐depth exploration of quantitative MR equations. The textual description of RF pulses 
has been reduced and supplemented with PulseWizard, a Matlab‐based RF pulse generation 
and simulation graphical user interface available for download at the accompanying website 
(http://booksupport.wiley.com).

Many of the ideas and changes that formed the basis for this third edition came from 
numerous discussions with colleagues. I would like to thank Henk De Feyter, Chathura 
Kumaragamage, Terry Nixon, Graeme Mason, Kevin Behar, and Douglas Rothman for many 
fruitful discussions.

Finally, I would like to acknowledge the contributions of original data from Dan Green and 
Simon Pittard (Magnex Scientific), Wolfgang Dreher (University of Bremen), Andrew Maudsley 
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(University of Miami), Yanping Luo and Michael Garwood (University of Minnesota), Bart 
Steensma, Dennis Klomp, Kees Braun, Jan van Emous, and Cees van Echteld (Utrecht University), 
and Henk De Feyter, Zachary Corbin, Robert Fulbright, Graeme Mason, Terry Nixon, Laura 
Sacolick, and Gerald Shulman (Yale University).

May 2018	 Robin A. de Graaf
New Haven, CT, USA
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TEM	 transverse electromagnetic mode
Thr	 threonine
TMA	 trimethylammonium
TMS	 tetramethylsilane
TOCSY	 total correlation spectroscopy
TPPI	 time proportional phase incrementation
Trp	 tryptophan
TSP	 3‐(trimethylsilyl)‐propionate
Tyr	 tyrosine
UV	 ultraviolet
Val	 valine
VAPOR	 variable pulse powers and optimized relaxation delays
VARPRO	 variable projection
VERSE	 variable rate selective excitation
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VNA	 variable nutation angle
VOI	 volume of interest
VSE	 volume selective excitation
WALTZ	 wideband alternating phase low‐power technique for zero residue splitting
WEFT	 water eliminated Fourier transform
WET	 water suppression enhanced through T1 effects
ZQC	 zero quantum coherence

Symbols

A	 absorption frequency domain signal
An, Bn	 Fourier coefficients
b	 b‐value (in s/m2)
b	 b‐value matrix
B0	 external magnetic field (in T)
B1	 magnetic radiofrequency field of the transmitter (in T)
B1max	 maximum amplitude of the irradiating B1 field (in T)
B1rms	 root mean square B1 amplitude of a RF pulse (in T)
B1x, B1y	 real and imaginary components of the irradiating B1 field (in T)
B2	 magnetic, radiofrequency field of the decoupler (in T)
Be	 effective magnetic field in the laboratory and frequency frames (in T)
Be	 effective magnetic field in the second rotating frame (in T)
Bloc	 local magnetic field (in T)
C	 capacitance (in F)
C	 correction factor for calculating absolute concentrations
D	 (apparent) diffusion coefficient (in m2 s−1)
D	 (apparent) diffusion tensor
D	 dispersion frequency domain signal
E	 energy (in J)
F	 Nyquist frequency (in 1 s−1)
F	 noise figure (in dB)
fB(t)	 normalized RF amplitude modulation function
fν(t)	 normalized RF frequency modulation function
G	 magnetic field gradient strength (in T m−1)
G(t)	 correlation function
h	 Planck’s constant (6.626 208 × 10–34 Js)
H	 Hadamard matrix
I	 imaginary time‐ or frequency‐domain signal
I	 spin quantum number
I0	 Boltzmann equilibrium magnetization for spin I
Inm	 shim current for shim coil of order n and degree m
J	 spin–spin or scalar coupling constant (in Hz)
J0	 zero‐order Bessel function
J(ν)	 spectral density function
k	 Boltzmann equilibrium constant (1.380 66 × 10–23 J K−1)
k	 k‐space variable (in m−1)
kf	 k‐space variable in frequency‐encoding direction (in m−1)
kp	 k‐space variable in phase‐encoding direction (in m−1)
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kAB, kBA	 unidirectional rate constants (in s−1)
kfor	 forward, unidirectional rate constant (in s−1)
krev	 reversed, unidirectional rate constant (in s−1)
L	 inductance (in H)
m	 magnetic quantum number
m	 mass (in kg)
M	 macroscopic magnetization
M	 magnitude‐mode frequency domain signal
M	 mutual inductance (in H)
M0	 macroscopic equilibrium magnetization
Mx, My, Mz	 orthogonal components of the macroscopic magnetization
N	 noise
N	 number of phase‐encoding increments
N	 total number of nuclei or spins in a macroscopic sample
p	 order of coherence
Q	 quality factor
r	 distance (in m)
R	 composite pulse (sequence)
R	 product of bandwidth and pulse length
R	 real time‐ or frequency‐domain signal
R	 resistance (in Ω)
R	 rotation matrix
R1A, R1B	 longitudinal relaxation rate constants for spins A and B in the absence of 

chemical exchange or cross‐relaxation (in s−1)
R2	 transverse relaxation rate (in s−1)
RA, RB	 longitudinal relaxation rate constants for spins A and B in the presence of 

chemical exchange (in s−1)
RH	 hydrodynamic radius (in m)
S	 measured NMR signal
S(k)	 spatial frequency sampling function
t	 time (in s)
t1	 incremented time in 2D NMR experiments (in s)
t1max	 maximum t1 period in constant time 2D NMR experiments (in s)
t2	 detection period in 2D NMR experiments (in s)
tdiff	 diffusion time (in s)
tnull	 time of zero‐crossing (nulling) during an inversion recovery experiment (in s)
T	 absolute temperature (in K)
T	 pulse length (in s)
T1	 longitudinal relaxation time constant (in s)
T1,obs	 observed, longitudinal relaxation time constant (in s)
T2	 transverse relaxation time constant (in s)
T2

*	 apparent transverse relaxation time constant (in s)
T2,obs	 observed, transverse relaxation time constant (in s)
Tacq	 acquisition time (in s)
TE	 echo time (in s)
TECPMG	 echo time in a CPMG experiment (in s)
TI	 inversion time (in s)
TI1	 first inversion time (in s)
TI2	 second inversion time (in s)
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TM	 delay time between the second and third 90º pulses in STEAM (in s)
TR	 repetition time (in s)
v	 velocity (in m s−1)
W	 transition probability (in 1 s−1)
Wnm	 angular function of spherical polar coordinates
W(k)	 spatial frequency weighting function
x	 molar fraction
XC	 capacitive reactance (in Ω)
XL	 inductive reactance (in Ω)
Z	 impedance (in Ω)
α	 nutation angle (in rad)
β	 precession angle of magnetization perpendicular to the effective magnetic field Be 

(in rad)
γ	 gyromagnetic ratio (in rad T−1 s−1)
δ	 chemical shift (in ppm)
δ	 gradient duration (in s)
Δ	 separation between a pair of gradients (in s)
ΔB0	 magnetic field shift (in T)
Δν	 frequency offset (in Hz)
Δν1/2	 full width at half maximum of an absorption line (in Hz)
Δνmax	 maximum frequency modulation of an adiabatic RF pulse (in Hz)
ε	 gradient rise time for a trapezoidal magnetic field gradient (in s)
η	 nuclear Overhauser enhancement
η	 viscosity (in Ns m−2)
θ	 nutation angle (in rad)
μ	 magnetic moment (in A∙m2)
μ0	 permeability constant in vacuum (4π∙10−7 kg∙m∙s−2∙A−2)
μe	 electronic magnetic moment (in A∙m2)
ν0	 Larmor frequency (in Hz)
νA	 frequency of a non‐protonated compound A (in Hz)
νHA	 frequency of a protonated compound HA (in Hz)
νref	 reference frequency (in Hz)
ξ	 electromotive force (in V)
σ	 density matrix
τc	 rotation correlation time (in s)
τm	 mixing time in 2D NMR experiments (in s)
ϕ	 phase (in rad)
ϕ0	 zero‐order (constant) phase (in rad)
ϕ1	 first‐order (linear) phase (in rad)
ϕc	 phase correction (in rad)
χ	 magnetic susceptibility
ω0	 Larmor frequency (in rad s−1)
[]	 concentration (in M)
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1.1  Introduction

Spectroscopy is the study of the interaction between matter and electromagnetic radiation. 
Atoms and molecules have a range of discrete energy levels corresponding to different, quantized 
electronic, vibrational, or rotational states. The interaction between atoms and electromagnetic 
radiation is characterized by the absorption and emission of photons with an energy that exactly 
matches the energy level difference between two states. Since the energy of a photon is propor-
tional to the frequency, the different forms of spectroscopy are often distinguished on the basis 
of the frequencies involved. For instance, absorption and emission between the electronic states 
of the outer electrons typically require frequencies in the ultraviolet (UV) range, hence giving 
rise to UV spectroscopy. Molecular vibrational modes are characterized by frequencies just 
below visible red light and are thus studied with infrared (IR) spectroscopy. Nuclear magnetic 
resonance (NMR) spectroscopy uses radiofrequencies, which are typically in the range of 
10–1000 MHz.

NMR is the study of the magnetic properties and related energies of nuclei. The absorption 
of radiofrequency energy can be observed when the nuclei are placed in a (strong) external 
magnetic field. Purcell et al. [1] at MIT, Cambridge and Bloch et al. [2–4] at Stanford simulta-
neously, but independently discovered NMR in 1945. In 1952, Bloch and Purcell shared the 
Nobel Prize in Physics in recognition of their pioneering achievements [5, 6]. At this stage, 
NMR was purely an experiment for physicists to determine the nuclear magnetic moments 
of nuclei. NMR could only develop into one of the most versatile forms of spectroscopy after 
the discovery that nuclei within the same molecule absorb energy at different resonance 
frequencies. These so‐called chemical shift effects, which are directly related to the chemical 
environment of the nuclei, were first observed in 1949 by Proctor and Yu [7], and independently 
by Dickinson [8]. The ability of NMR to provide detailed chemical information on compounds 
was firmly established when Arnold et al. [9] in 1951 published a high‐resolution 1H NMR 
spectrum of ethanol in which separate signals from methyl, methylene, and hydroxyl protons 
could be clearly recognized.

In the first two decades, NMR spectra were recorded in a continuous wave mode in which the 
magnetic field strength or the radio frequency was swept through the spectral area of interest, 
while keeping the other fixed. In 1966, NMR was revolutionized by Ernst and Anderson [10] 
who introduced pulsed NMR in combination with Fourier transformation. Pulsed or Fourier 
transform NMR is at the heart of all modern NMR experiments.

The induced energy level difference of nuclei in an external magnetic field is very small 
when compared to the thermal energy at room temperature, making it that the energy levels 
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are almost equally populated. As a result the absorption of photons is very low, making NMR 
a very insensitive technique when compared to the other forms of spectroscopy. However, 
the low‐energy absorption makes NMR also a noninvasive and nondestructive technique, 
ideally suited for in vivo measurements. It is believed that, by observing the water signal from 
his own finger, Bloch was the first to perform an in vivo NMR experiment. Over the following 
decades, NMR studies were carried out on various biological samples like vegetables and 
mammalian tissue preparations. Continued interest in defining and explaining the properties 
of water in biological tissues led to the promising report of Damadian in 1971 [11] that NMR 
properties (relaxation times) of malignant tumorous tissues significantly differs from normal 
tissue, suggesting that proton NMR may have diagnostic value. In the early 1970s, the first 
experiments of NMR spectroscopy on intact living tissues were reported. Moon and Richards 
[12] used 31P NMR on intact red blood cells and showed how the intracellular pH can be 
determined from chemical shift differences. In 1974, Hoult et al. [13] reported the first study 
of 31P NMR to study intact, excised rat hind leg. Acquisition of the first 1H NMR spectra was 
delayed by almost a decade due to technical difficulties related to spatial localization, and 
water and lipid suppression. Behar et al. [14] and Bottomley et al. [15] reported the first 1H 
NMR spectra from rat and human brain, respectively. Since the humble beginnings, in vivo 
MR spectroscopy (MRS) has grown as an important technique to study static and dynamic 
aspects of metabolism in disease and in health.

In parallel with the onset of in vivo MRS, the world of high‐resolution, liquid‐state NMR 
was revolutionized by the introduction of 2D NMR by Ernst and coworkers [16] based on the 
concept proposed by Jeener in 1971 [17]. The development of hundreds of 2D methods in the 
following decades firmly established NMR as a leading analytical tool in the identification 
and structure determination of low‐molecular weight chemicals. Richard Ernst was awarded 
the 1991 Nobel Prize in Chemistry for his contributions to the methodological development 
of NMR [18]. The application of multidimensional NMR to the study of biological macromol-
ecules allowed determination of the 3D structure of proteins in an aqueous environment, 
providing an alternative to X‐ray crystallography. Kurt Wuthrich was awarded the 2002 Nobel 
Prize in Chemistry for his contributions to the development of protein NMR and 3D protein 
structure determination [19].

Around the same time reports on in vivo MRS appeared, Lauterbur [20] and Mansfield and 
Grannell [21] described the first reports on a major constituent of modern NMR, namely in 
vivo NMR imaging or magnetic resonance imaging (MRI). By applying position‐dependent 
magnetic fields in addition to the static magnetic field, they were able to reconstruct the spatial 
distribution of nuclear spins in the form of an image. Lauterbur and Mansfield shared the 2003 
Nobel Prize in Medicine [22, 23]. Since its inception, MRI has flourished to become the leading 
method for structural and functional imaging with methods like diffusion tensor imaging (DTI) 
and blood oxygenation level‐dependent (BOLD) functional MRI.

As a leading clinical and research imaging modality, the theoretical and practical aspects of 
MRI are covered in a wide range of excellent textbooks [24–26]. While MRS is based on the 
same fundamental principles as MRI, the practical considerations for high‐quality MRS are 
very different. This book is dedicated to providing a robust description of current in vivo MRS 
methods, with an emphasis on practical challenges and considerations. This chapter covers the 
principles of NMR that are common to both MRI and MRS. Starting with classical arguments, 
the concepts of precession, coherence, resonance, excitation, induction, and relaxation are 
explained. The quantum mechanical view of NMR is briefly reviewed after which the phenom-
ena of chemical shift and scalar coupling will be described, as well as some elementary process-
ing of the NMR signal.
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1.2  Classical Magnetic Moments

The discovery of NMR by Bloch and Purcell in 1945 was not a serendipitous event, but was 
based on the work by Rabi [27, 28] in the previous decade on magnetic resonance of individual 
particles in a molecular beam for which he received the 1944 Nobel Prize in Physics. While 
both groups reported the detection of signal associated with proton magnetic moments, the 
experimental setups as well as the conceptualization of the NMR phenomenon were very 
different.

Bloch approached NMR from a classical point of view in which the orientation of magnetic 
moments is gradually changed by an oscillating magnetic field. This would ultimately lead 
to the detection of NMR signal from water protons through electromagnetic induction in a 
nearby receiver coil. Purcell viewed the NMR phenomenon based on quantum mechanics, in 
close analogy to other spectroscopic methods in which transitions are induced between energy 
levels by quanta of energy provided by radiofrequency (RF) waves. Purcell described the 
absorption of energy provided by an oscillating RF field by the protons in solid paraffin. A won-
derful overview of the two discoveries of NMR is given by Rigden [29] and Becker et al. [30] as 
well as by the Nobel lectures of Bloch [5] and Purcell [6].

The spectroscopic or quantum mechanical view often takes center stage in the introduction 
of many text books, including the previous editions of this book. The main reason for this 
approach is that a full quantum mechanical description of NMR can account for all observed 
phenomena, including those that have no classical analog, like scalar or J‐coupling. However, 
as the quantum description of NMR does not deal directly with observable magnetization, but 
rather with the energetic state of the system, it does not provide an intuitive, physical picture. 
In the classical view of NMR, the magnetic moments of the individual nuclear spins are 
summed up to form a macroscopic magnetization vector that can be followed over time using 
classical electromagnetism concepts. This provides a familiar picture that can be used to follow 
the fate of magnetization under a wide range of experimental conditions. The classical picture 
is advocated here, starting with a magnetized needle as found in a compass.

As with all magnets, the compass needle is characterized by a magnetic north and south 
pole from which the magnetic field lines exit and enter the needle, respectively (Figure 1.1A). 
The magnetic field lines shown in Figure 1.1A can be summarized by a magnetic moment, μ, 
describing both the amplitude and direction. In the absence of an external magnetic field 
the  compass needle has no preference in spatial orientation and can therefore point in 
any direction.

When placed in an external magnetic field, such as the Earth’s magnetic field, the compass 
needle experiences a torque (or rotational force) that rotates the magnetic moment towards a 
parallel orientation with the external field (Figure 1.1B). As the magnetic moment “overshoots” 
the parallel orientation, the torque is reversed and the needle will settle into an oscillation or 
frequency that depends on the strengths of the external magnetic field and the magnetic 
moment. Due to friction between the needle and the mounting point, the amplitude of the 
oscillation is dampened and will ultimately result in the stabile, parallel orientation of the nee-
dle with respect to the external field (Figure 1.1C) representing the lowest magnetic energy 
state (the antiparallel orientation represents the highest magnetic energy state).

The equilibrium situation (Figure  1.1C) can, besides mechanical means, be perturbed by 
additional magnetic fields as shown in Figure 1.1D. When a bar magnet is moved towards the 
compass, the needle experiences a torque and is pushed away from the parallel orientation. 
When the bar magnet is removed, the needle oscillates as shown in Figure 1.1B before return-
ing to the equilibrium situation (Figure 1.1C). However, if the bar magnet is moved back and 
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forth relative to the compass, the needle can be made to oscillate continuously. When the 
movement frequency of the bar magnet is very different from the natural frequency of the 
needle (Figure  1.1B), the effect of the bar magnet is not constructive and the needle never 
deviates far from the parallel orientation. However, when the frequency of the bar magnet 
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Figure 1.1  Oscillations of a classical compass needle. (A) A compass needle with a magnetic north and south 
pole creates a dipolar magnetic field distribution of which the amplitude and direction are characterized by the 
magnetic moment μ. (B) When placed in an external magnetic field the magnetic moment oscillates a number of 
times before (C) settling in a parallel orientation with the external magnetic field. Note that in Earth’s magnetic 
field the compass needle points to the magnetic south, which happens to be close to geographical north. (D) The 
needle can be perturbed with a bar magnet, whereby the perturbation reaches maximum effect when the bar 
movement matches the natural frequency of the needle. (E) The bar magnet can be replaced by an alternating 
current in a coil. (F) The same coil can also be used to detect the oscillating magnetic moment of the needle 
through electromagnetic induction.
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movement matches the natural frequency of the needle, the repeated push from the bar magnet 
on the needle is constructive and the needle will deviate increasingly further from the parallel 
orientation. When the bar magnet has a maximum effect on the needle, the system is in reso-
nance and the oscillation is referred to as the resonance frequency. A similar situation arises 
when pushing a child in a swing; only when the child is pushed in synchrony with the natural 
or resonance frequency of the swing set does the amplitude get larger.

The bar magnet can be replaced with an alternating current in a copper coil as shown in 
Figure 1.1E. The alternating current generates a time-varying magnetic field that can perturb 
the compass needle. When the frequency of the alternating current matches the natural fre-
quency of the needle, the system is in resonance and large deviations of the needle can be 
observed with modest, but constructive “pushes” from the magnetic field produced by the coil.

The compass needle continues to oscillate at the natural frequency for some time following 
the termination of the alternating current (Figure 1.1F). The compass needle creates a time‐
varying magnetic field that can be detected through Faraday electromagnetic induction in the 
same coil previously used to perturb the needle. The induced voltage, referred to as the Free 
Induction Decay (FID), will oscillate at the natural frequency and will gradually reduce in 
amplitude as the compass needle settles into the parallel orientation.

Figure 1.1 shows that the MR part of NMR can be completely described by classical means. 
It is therefore also not surprising that Bloch titled his seminal paper “Nuclear induction” [2, 4] 
as the electromagnetic induction is an essential part of MR detection. The magnetic effects 
summarized in Figure  1.1 are readily reproduced “on the bench” and provide an excellent 
means of experimentally demonstrating some of the concepts of MR [31].

1.3  Nuclear Magnetization

Any rotating object is characterized by angular momentum, describing the tendency of the 
object to continue spinning. Subatomic particles like electrons, neutrons, and protons have an 
intrinsic angular moment, or spin that is there even though the particle is not actually spinning. 
Electron spin results from relativistic quantum mechanics as described by Dirac in 1928 [32] 
and has no classical analog. For the purpose of this book the existence of spin is simply taken 
as a feature of nature. Particles with spin always have an intrinsic magnetic moment. This can 
be conceptualized as a magnetic field generated by rotating currents within the spinning 
particle. This should, however, not be taken too literal as the particle is not actually rotating. 
Note that in the NMR literature, spin and magnetic moments are used interchangeably.

Protons are abundantly present in most tissues in the form of water or lipids. In the human 
brain, a small cubic volume of 1 × 1 × 1 mm contains about 6 × 1019 proton spins (Figure 1.2A 
and B). In the absence of an external magnetic field, the spin orientation has no preference and 
the spins are randomly oriented throughout the sample (Figure 1.2B). For a large number of 
spins this can also be visualized by a “spin‐orientation sphere” (Figure 1.2C) in which each spin 
has been placed in the center of a Cartesian grid. Summation over all orientations leads to a 
(near) perfect cancelation of the magnetic moments and hence to the absence of a macroscopic 
magnetization vector. It should be noted that the concept of a spin‐orientation sphere has been 
used throughout the NMR literature [33–35], albeit sporadically. The description of the NMR 
phenomenon based on a spin‐orientation sphere will be advocated here as a classical, intuitive 
alternative to the quantum‐mechanical view.

Up to this point the nuclear magnetic moments behave similarly to the magnetic moments 
associated with classical compass needles. However, unlike compass needles nuclear magnetic 
moments have intrinsic angular momentum or spin which can be visualized as a nucleus 
spinning around its own axis (Figure  1.2D). When a nuclear spin is placed in an external 
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magnetic field (Figure 1.2E) the presence of angular momentum makes the magnetic moment 
precess around the external magnetic field (Figure 1.2E). This effect is referred to as Larmor 
precession and the corresponding Larmor frequency ν0 (in MHz) is given by

0
0

02 2
B 	 (1.1)

where γ is the gyromagnetic (or magnetogyric) ratio (in rad∙MHz T−1) and B0 is the magnetic 
field strength (in T). The gyromagnetic ratio, which is constant for a given nucleus, is tabulated 
in Table 1.1. For protons at 7.0 T the Larmor frequency is 298 MHz. It should be noted that 
Larmor precession occurs for any spinning magnetic moment in a magnetic field, including 
classical objects and that it was described decades before the discovery of NMR [36].

When the protons depicted in Figure 1.2B are subjected to an external magnetic field, every 
spin starts to precess around the magnetic field with the same Larmor frequency. The Larmor 
frequency is independent of the angle between the external magnetic field and an individual spin. 
As the orientation of the magnetic moment with respect to the main magnetic field does (initially) 
not change, the spin‐orientation sphere representation of Figure 1.2C remains unchanged with 
the exception that the entire sphere is rotating around the magnetic field at the Larmor frequency. 
If Larmor precession would be the only effect induced by the external magnetic field, then NMR 
would never have developed into the versatile technique as we know it today.

(B)

(D) (E) (F) (G)

(C)(A)

Figure 1.2  Precession of nuclear spins. (A, B) A small 1 μl volume from the human brain contains about 6 × 1019 
protons, primarily located in water molecules. (B, C) In the absence of a magnetic field the proton spins have no 
orientational preference, leading to a randomly distributed “spin‐orientation sphere.” (D) Unlike compass 
needles, nuclear magnetic moments have intrinsic angular momentum or spin that leads to (E) a precessional 
motion when placed in a magnetic field. (F) All spins attain Larmor precession, but retain their random 
orientation to a good first approximation. (G) While the spin‐orientation sphere also remains random when 
placed in a magnetic field, the entire sphere will attain Larmor precession.



Basic Principles 7

Fortunately, there is a second, more subtle effect that ultimately leads to a net, macroscopic 
magnetization vector that can be detected. The water molecules in Figure 1.2B are in the liquid 
state and therefore undergo molecular tumbling with a range of rotations, translations, and col-
lisions. As a result, the amplitude and orientation of the magnetic field generated by one proton 
at the position of another proton changes over time (Figure 1.3A). When the local field fluctua-
tion matches the Larmor frequency, it can perturb the spin orientation. These perturbations are 
largely, but not completely, random. The presence of a strong external magnetic field slightly 
favors the parallel spin orientation. As a result, over time the completely random spin orientation 
distribution (Figure 1.3B) changes into a distribution that is slightly biased towards a parallel spin 
orientation (Figure 1.3C). Visually, the spin distributions in the absence (Figure 1.3B) and pres-
ence (Figure 1.3C) of an external magnetic field look similar because the net number of spins that 
are biased towards the parallel orientation is very small, on the order of one in a million. The situ-
ation becomes visually clearer when the spin distribution is separated into spins that have a 
random orientation distribution (Figure 1.3D) and spins that are slightly biased towards a parallel 
orientation (Figure 1.3E). Adding the magnetic moments of Figure 1.3D does not lead to macro-
scopic magnetization similar to the situation in Figure  1.2G. However, adding the magnetic 
moments of Figure 1.3E leads to a macroscopic magnetization vector parallel to the external 
magnetic field. As the external magnetic field only biases the spin distribution along its direction, 
the spin distribution in the two orthogonal, transverse directions is still random.

The microscopic processes detailed in Figure 1.3A–E can be summarized at a macroscopic 
level as shown in Figure  1.3F. In the absence of a magnetic field (t  < 0) the sample does not 
produce macroscopic magnetization. When an external magnetic field is instantaneously turned 
on (t = 0), the macroscopic magnetization exponentially grows over time where it plateaus at 

Table 1.1  NMR properties of biologically relevant nuclei encountered in in vivo NMR.

Isotope Spin
Gyromagnetic ratio 
(rad∙MHz T−1)

NMR frequency 
ratio (% of 1H)

Natural 
abundance (%)

1H 1/2 267.522 100.000 99.985
2H 1 41.066 15.351 0.015
3He 1/2 −203.802 76.179 0.000 14
7Li 3/2 103.977 38.864 92.58
13C 1/2 67.283 25.145 1.108
14N 1 19.338 7.226 99.630
15N 1/2 −27.126 10.137 0.370
17O 5/2 −36.281 13.556 0.037
19F 1/2 251.815 94.094 100.000
23Na 3/2 70.808 26.452 100.000
29Si 1/2 −53.190 19.867 4.7
31P 1/2 108.394 40.481 100.000
33S 3/2 20.557 7.676 0.76
35CI 3/2 26.242 9.798 75.53
37CI 3/2 21.844 8.156 24.47
39K 3/2 12.501 4.667 93.100
129Xe 1/2 −74.521 27.810 26.44
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a  value corresponding to the thermal equilibrium magnetization, M0. The appearance of 
macroscopic magnetization can be described by

M M M Mt t T
z z e0 0 0 1/ 	 (1.2)

where T1 is the longitudinal relaxation time constant and Mz(0) is the longitudinal magnetization 
at time zero. In the case of Figure 1.3, the initial longitudinal magnetization is zero, i.e. Mz(0) = 0. 
At the time of the first NMR studies, little was known about T1 relaxation times in bulk matter. 
Both originators of NMR, Bloch and Purcell, were acutely aware that a very long T1 relaxation 
time constant could seriously complicate the detection of nuclear magnetism. As a precaution, 
Purcell used an exceedingly small RF field such as not to saturate the sample [1], whereas it is 
rumored that Bloch left his sample in the magnet to reach thermal equilibrium while on a skiing 
trip [29]. Following the initial experiments it became clear that T1 relaxation time constants can 
range from milliseconds to minutes, with water establishing thermal equilibrium in seconds. 
Extraordinarily long T1 relaxation times may, however, have been the main reason for earlier, 
negative reports by Gorter [37, 38] on the detection of NMR in bulk matter.

The longitudinal magnetization vector represents the signal that will be detected in an NMR 
experiment. However, the static, longitudinal magnetization is never detected directly as its 
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Figure 1.3  Appearance of macroscopic magnetization through T1 relaxation. (A) Molecular tumbling and 
Brownian motion causes spin 1 (gray) to experience a wide range of magnetic field fluctuations originating from 
spin 2 (black) and other spins outside the water molecule. Magnetic field fluctuations of the proper frequency 
can change the spin orientation. While the perturbations are largely random, there is a very slight bias towards a 
parallel orientation with the external magnetic field. Over time the almost random perturbations transform a 
completely random spin‐orientation sphere (B) into one that has a small polarization M0 (C). The small polarization 
M0 can be visualized better when the spins with a random orientation (D) are separated from the spins that have 
attained a slight bias (E). (F) Macroscopically the small polarization M0 appears exponentially over time with a 
characteristic T1 relaxation time constant according to Eq. (1.2).




